Groebner Bases and the Cohomology of Grassmann Manifolds with Application to Immersion

نویسنده

  • KENNETH G. MONKS
چکیده

LetGk,n be the Grassmannmanifold of k-planes inR . Borel showed that H∗ (Gk,n; Z2) = Z2 [w1, . . . , wk] /Ik,n where Ik,n is the ideal generated by the dual Stiefel-Whitney classes wn+1, . . . , wn+k. We compute Groebner bases for the ideals I2,2i−3 and I2,2i−4 and use these results along with the theory of modi ed Postnikov towers to prove new immersion results, namely that G2,2i−3 immerses in R i+2−15. As a bene t of the Groebner basis theory we also obtain a simple description of H∗ ( G2,2i−3; Z2 ) and H∗ ( G2,2i−4; Z2 ) and use these results to give a simple proof of some non-immersion results of Oproui.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gröbner Bases of Oriented Grassmann Manifolds

For n = 2 − 4, m > 2, we determine the cup-length of H∗(G̃n,3;Z/2) by finding a Gröbner basis associated with a certain subring, where G̃n,3 is the oriented Grassmann manifold SO(n + 3)/SO(n)× SO(3). As an application, we provide not only a lower but also an upper bound for the LS-category of G̃n,3. We also study the immersion problem of G̃n,3.

متن کامل

Ring structures of mod p equivariant cohomology rings and ring homomorphisms between them

In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...

متن کامل

Multiple point of self-transverse immesions of certain manifolds

In this paper we will determine the multiple point manifolds of certain self-transverse immersions in Euclidean spaces. Following the triple points, these immersions have a double point self-intersection set which is the image of an immersion of a smooth 5-dimensional manifold, cobordant to Dold manifold $V^5$ or a boundary. We will show there is an immersion of $S^7times P^2$ in $mathbb{R}^{1...

متن کامل

Quantum Cohomology Rings of Fano Manifolds and a Formula of Vafa and Intriligator

Quantum multiplications on the cohomology of symplectic manifolds were first proposed by the physicist Vafa [Va2] based on Witten’s topological sigma models [Wi1]. In [RuTi], Ruan and the second named author gave a mathematical construction of quantum multiplications on cohomology groups of positive symplectic manifolds (cf. Chapter 1). The construction uses the Gromov-Ruan-Witten invariants (G...

متن کامل

Application of Gröbner Bases to the Cup-length of Oriented Grassmann Manifolds

Let R be a commutative ring. The cup-length of R is defined by the greatest number n such that there exist x1, . . . , xn ∈ R \ R with x1 · · · xn , 0. We denote the cup-length of R by cup(R). In particular, for a space X and a commutative ring A, the cup-length of X with the coefficient A, is defined by cup(H̃(X; A)). We denote it by cupA(X). It is well-known that cupA(X) is a lower bound for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997